Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We prove a formula for the involutive concordance invariants of the cabled knots in terms of those of the companion knot and the pattern knot. As a consequence, we show that any iterated cable of a knot with parameters of the form (odd,1) is not smoothly slice as long as either of the involutive concordance invariants of the knot is nonzero. Our formula also gives new bounds for the unknotting number of a cabled knot, which are sometimes stronger than other known bounds coming from knot Floer homology.more » « less
-
We prove first-order naturality of involutive Heegaard Floer homology, and furthermore, construct well-defined maps on involutive Heegaard Floer homology associated to cobordisms between three-manifolds. We also prove analogous naturality and functoriality results for involutive Floer theory for knots and links. The proof relies on the doubling model for the involution, as well as several variations.more » « less
-
We give infinitely many examples of manifold-knot pairs (Y, J) such that Y bounds an integer homology ball, J does not bound a non-locally-flat PL-disk in any integer homology ball, but J does bound a smoothly embedded disk in a rational homology ball. The proof relies on formal properties of involutive Heegaard Floer homology.more » « less
-
Abstract We introduce a contact invariant in the bordered sutured Heegaard Floer homology of a three-manifold with boundary. The input for the invariant is a contact manifold $$(M, \xi , \mathcal {F})$$ whose convex boundary is equipped with a signed singular foliation $$\mathcal {F}$$ closely related to the characteristic foliation. Such a manifold admits a family of foliated open book decompositions classified by a Giroux correspondence, as described in [LV20]. We use a special class of foliated open books to construct admissible bordered sutured Heegaard diagrams and identify well-defined classes $$c_D$$ and $$c_A$$ in the corresponding bordered sutured modules. Foliated open books exhibit user-friendly gluing behavior, and we show that the pairing on invariants induced by gluing compatible foliated open books recovers the Heegaard Floer contact invariant for closed contact manifolds. We also consider a natural map associated to forgetting the foliation $$\mathcal {F}$$ in favor of the dividing set and show that it maps the bordered sutured invariant to the contact invariant of a sutured manifold defined by Honda–Kazez–Matić.more » « less
-
Given a double cover between 3-manifolds branched along a nullhomologous link, we establish an inequality between the dimensions of their Heegaard Floer homologies. We discuss the relationship with the L-space conjecture and give some other topological applications, as well as an analogous result for sutured Floer homology.more » « less
-
We give a bordered extension of involutive HF-hat and use it to give an algorithm to compute involutive HF-hat for general 3-manifolds. We also explain how the mapping class group action on HF-hat can be computed using bordered Floer homology. As applications, we prove that involutive HF-hat satisfies a surgery exact triangle and compute HFI-hat of the branched double covers of all 10-crossing knots.more » « less
-
We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $$\bar{d}$$ and $$\text{}\underline{d}$$ for certain families of three-manifolds.more » « less
An official website of the United States government

Full Text Available